Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[tetramethylammonium [argentate(I)-di- μ-bromido]]

Xi Liu

College of Chemistry, Chongqing Normal University, Chongqing 400047, People's Republic of China
Correspondence e-mail: xliu@cqnu.edu.cn

Received 20 September 2007; accepted 24 September 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{N})=0.005 \AA$; some non-H atoms missing; R factor $=0.030 ; w R$ factor $=0.068$; data-to-parameter ratio $=$ 16.5 .

The title compound, $\left\{\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{AgBr}_{2}\right]\right\}_{n}$, is isomorphous with its chloride analogue [Helgesson, Josefsson \& Jagner (1988). Acta Cryst. C44, 1729-1731]. It displays a one-dimensional ${ }_{1}^{\infty}\left[\mathrm{Ag}_{2} \mathrm{Br}_{4}\right]_{n}{ }^{2 n-}$ anionic chain structure accompanied by isolated tetramethylammonium cations. All the crystallographically independent non- H atoms lie on special positions, namely Ag on $2 m m, \mathrm{Br}$ on $m m 2$ or $m 2 m, \mathrm{~N}$ on $m m 2$, and C on sites of symmetry m_{a} or m_{b}. The tetramethylammonium cations reside between these anionic chains, with weak C $\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonding interactions forming a layer perpendicular to the c axis; these layers stack together along the c direction merely by van der Waals forces.

Related literature

For related literature, see: Bringley et al. (2005), and references therein; Helgesson et al. (1988); Helgesson \& Jagner (1991); Liu et al. (2005, 2006); Steiner (1996); Stomberg (1969).

Experimental

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{AgBr}_{2}\right]$
$M_{r}=341.84$
Orthorhombic, Immm
$a=6.7817$ (9) A
$b=9.1535$ (14) A
$c=15.057$ (2) \AA
$V=934.7$ (2) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=10.63 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.20 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD
Absorption correction: multi-scan (SPHERE in CrystalClear;

Rigaku, 2002)
$T_{\text {min }}=0.13, T_{\text {max }}=0.18$
2952 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.068$
$S=1.00$
494 reflections

494 independent reflections 459 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$

30 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.65 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.77 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{Br} 2$	$2.7006(5)$	$\mathrm{Ag} 1-\mathrm{Br} 1$	$2.7221(5)$
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 2$	107.14 (2)	$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br} 1^{\mathrm{ii}}$	$97.93(2)$
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Br} 1$	$112.947(7)$		
Symmetry codes: (i) $-x+1,-y+1,-z+1 ;$ (ii) $-x,-y+1,-z+1$			

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.96	2.85	$3.802(4)$	172
Symmetry code: (iii) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{1}{2}$.				

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP (Johnson, 1976); software used to prepare material for publication: SHELXTL.

The author gratefully acknowledges financial support by the Scientific Research Foundation for Doctors of Chongqing Normal University (grant No. 06XLB016), the Scientific Project of Chongqing Municipal Education Commission (grant No. KJ070812) and the Natural Science Foundation Project of Chongqing (grant No. CSTC2007BB4234).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG3057).

References

Bringley, J. F., Rajeswaran, M., Olson, L. P. M. \& Liebert, N. (2005). J. Solid State Chem. 178, 3074-3089.
Helgesson, G., Josefsson, M. \& Jagner, S. (1988). Acta Cryst. C44, 1729-1731.
Helgesson, G. \& Jagner, S. (1991). Inorg. Chem. 30, 2574-2577.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, X., Guo, G.-C., Fu, M.-L., Chen, W.-T., Zhang, J.-Z. \& Huang, J.-S. (2006). Dalton Trans. pp. 884-886.
Liu, X., Guo, G.-C., Liu, B., Chen, W.-T. \& Huang, J.-S. (2005). Cryst. Growth Des. 5, 841-843.
Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Siemens (1994). SHELXTL. Version 5. Siemens Energy and Automation Inc., Madison, Wisconsin, USA.
Steiner, Th. (1996). Crystallogr. Rev. 6, 1-57.
Stomberg, R. (1969). Acta Chem. Scand. 23, 3498-3512.

supplementary materials

Acta Cryst. (2007). E63, m2619 [doi:10.1107/S1600536807046880]

catena-Poly[tetramethylammonium [argentate(I)-di- μ-bromido]]

X. Liu

Comment

Great interest is presently being focused on the controllable preparation of silver-halide-organoamonium compounds due to their potential application in photographic, photothermal, and other imaging or printing modalities (Bringley et al., 2005, and references therein). In these photographic functional compounds, the $\left[\operatorname{Ag}_{\mathrm{a}} X_{\mathrm{b}}\right]^{\mathrm{n}-}$ parts may serve as commercial photographic color developer molecules. The reactions of silver(I) cyanide with $\mathrm{Me}_{4} \mathrm{NBr}$ (tetramethylammonioum) in acetonitrile solution and then diffused with aether lead to a AgBr -based complex, $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Ag}_{2} \mathrm{Br}_{4}\right]$ (I), isomorphous to its Cl analogue, reported by Helgesson et al., 1988.

Compound (I) displays a one-dimensional ${ }_{1}^{\infty}\left[\mathrm{Ag}_{2} \mathrm{Br}_{4}\right]_{n}{ }^{2 \mathrm{n}-}$ anionic chain structure accompanied with isolated $\left[\mathrm{Me}_{4} \mathrm{~N}\right]^{+}$ cations. As shown in Figure 1, one crystallographically independent silver cation in the center of a slightly distorted tetrahedral geometry is coordinated by four $\mu-\mathrm{Br}$ atoms. The $\mathrm{Ag} — \mathrm{Br}$ bond distances range from 2.7006 (5) to 2.7221 (5) \AA, and the $\mathrm{Br}-\mathrm{Ag}-\mathrm{Br}$ bond angels vary between 97.93 (2) to 112.947 (7) ${ }^{\circ}$, in agreement with those in the $\left[\mathrm{Ag}_{\mathrm{a}} \mathrm{Br}_{\mathrm{b}}\right]^{\mathrm{n}-}$ clusters (Stomberg, 1969; Helgesson \& Jagner, 1991; Liu et al., 2006). The silver cations are double bridged by μ - Br atoms to form an one-dimensional ${ }^{\infty}{ }_{1}\left[\mathrm{Ag}_{2} \mathrm{Br}_{4}\right]_{\mathrm{n}}{ }^{2 \mathrm{n}-}$ anionic chain along the a direction, which also can be regarded as the common chain formed by edge-sharing $\left[\mathrm{AgBr}_{4}\right]^{3-}$ tetrahedrons (Stomberg, 1969; Helgesson \& Jagner, 1991). While the $\left[\mathrm{Me}_{4} \mathrm{~N}\right]^{+}$cations reside between these anionic chains with weak C-H $\cdots \mathrm{Br}$ hydrogen bonding interactions (Steiner, 1996; Liu et al., 2005) to form a special layer along the a and b directions (Figure 2). These special layers further stack together along the c direction merely by Van der Waals forces.

Solid-state luminescence spectra show that comound I exhibits a broad strong blue emission band centered around 485 nm upon photo-excitation at 300 nm (Figure 3) and its lifetime was measured to be $3.3 \mu \mathrm{~s}$, suggesting to be a potential candidate for luminescent material. Density of states (DOS) calculation sindicate that the top of valence bands (VBs) are mostly formed by $\mathrm{Ag}-4 \mathrm{~d}$ state mixing with $\mathrm{Br}-4 \mathrm{p}$ state, while the bottom of conduction bands (CBs) are almost contribution from the $\mathrm{Br}-4 \mathrm{~s}$ state, indicating the luminescent emission probably originated from metal-to-ligand charge transfer (MLCT) accompanied with hybridizations between $\mathrm{Ag}-4 \mathrm{~d}$ and $\mathrm{Br}-4 \mathrm{p}$.

Experimental

A mixture of $\mathrm{AgCN}(238 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $\mathrm{Me}_{4} \mathrm{NBr}(139 \mathrm{mg}, 0.9 \mathrm{mmol})$ in 10 ml of dry and distilled acetonitrile was sealed into a 25 ml polytetrafluoroethylene-lined stainless steel containers under autogenous pressure and heated at $120^{\circ} \mathrm{C}$ for 3 days, followed by cooling to room temperature. The resulted solution was filtered in a small tube, which was loaded into a large vial containing 5 ml diethyl ether. The large vial was sealed and left undisturbed at room temperature, and colourless crystals of the title complex were obtained in 7 days. Yield: 40%. Calc. for $\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{Ag}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2}$: C, 14.05; H, 3.54; N, 4.10; Found: C, 14.12; H, 3.60; N, 4.02.

supplementary materials

Refinement

Methyl H atoms were added geometrically and allowed to ride on their respective parent carbon atoms $(\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right)$. The groups were also allowed to rotate around the $\mathrm{N}-\mathrm{C}$ vector.

Figures

catena-Poly[tetramethylammonium [argentate(I)-di- μ-bromido]]

Crystal data

$$
\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{AgBr}_{2}\right]
$$

$M_{r}=341.84$
Orthorhombic, Immm
Hall symbol: -I 22
$a=6.7817$ (9) \AA
$b=9.1535(14) \AA$
$c=15.057(2) \AA$
$V=934.7(2) \AA^{3}$
$Z=4$

Data collection

Rigaku Mercury CCD
diffractometer
Radiation source: rotating-anode generator
Monochromator: graphite
$T=293(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SPHERE in CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.13, T_{\text {max }}=0.18$
2952 measured reflections

$$
\begin{aligned}
& F_{000}=640 \\
& D_{\mathrm{x}}=2.429 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 972 \text { reflections } \\
& \theta=3.3-27.5^{\circ} \\
& \mu=10.63 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.20 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 494 \text { independent reflections } \\
& 459 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=25.0^{\circ} \\
& \theta_{\min }=3.3^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-10 \rightarrow 10 \\
& l=-9 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.068$
$S=1.00$
494 reflections
30 parameters

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0315 P)^{2}+4.8 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.65$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.77$ e \AA^{-3}
Extinction correction: SHELXTL (Siemens, 1994),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00064 (14)

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Ag1	$0.26353(6)$	0.5000	0.5000	$0.05861(12)$	
Br1	0.0000	0.5000	$0.36364(3)$	$0.05356(14)$	
Br2	0.5000	$0.26262(5)$	0.5000	$0.05680(15)$	
N1	0.5000	0.5000	$0.1917(3)$	$0.0490(11)$	
C1	$0.3206(6)$	0.5000	$0.1370(3)$	$0.121(2)$	
H1A	0.3205	0.4156	0.0992	0.181^{*}	0.50
H1B	0.3174	0.5868	0.1013	0.181^{*}	0.50
H1C	0.2067	0.4976	0.1748	0.181^{*}	
C2	0.5000	$0.6304(4)$	$0.2516(3)$	$0.0781(14)$	
H2A	0.6152	0.6282	0.2887	0.117^{*}	0.50
H2B	0.3840	0.6288	0.2882	0.117^{*}	0.50
H2C	0.5008	0.7179	0.2165	0.117^{*}	

Atomic displacement parameters $\left(A^{2}\right)$
U^{11}
U^{22}
$U^{33} \quad U^{12}$
U^{13}
U^{23}

Ag1	$0.0521(2)$	$0.0711(2)$	$0.0526(2)$	0.000	0.000	0.000
Br 1	$0.0402(2)$	$0.0777(3)$	$0.0428(2)$	0.000	0.000	0.000
Br 2	$0.0566(3)$	$0.0474(3)$	$0.0664(3)$	0.000	0.000	0.000
N 1	$0.0416(19)$	$0.061(2)$	$0.044(2)$	0.000	0.000	0.000
C 1	$0.064(3)$	$0.224(7)$	$0.073(3)$	0.000	$-0.035(2)$	0.000
C 2	$0.072(2)$	$0.051(2)$	$0.111(3)$	0.000	0.000	$-0.005(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ag} 1-\mathrm{Br} 2{ }^{\text {i }}$	2.7006 (5)	$\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iii }}$	1.496 (5)
$\mathrm{Ag} 1-\mathrm{Br} 2$	2.7006 (5)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600
Ag1-Br1	2.7221 (5)	C1-H1B	0.9600
Ag1-Br1 ${ }^{\text {ii }}$	2.7221 (5)	C1-H1C	0.9600
N1-C1	1.470 (5)	C2-H2A	0.9600
$\mathrm{N} 1-\mathrm{C} 1{ }^{\text {iii }}$	1.470 (5)	C2-H2B	0.9600
N1-C2	1.496 (5)	C2-H2C	0.9600
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 2$	107.14 (2)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iii }}$	105.9 (4)
$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{Br} 1$	112.947 (7)	N1-C1-H1A	109.5
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Br} 1$	112.947 (7)	N1-C1-H1B	109.5
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 1^{\text {ii }}$	112.947 (7)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Br}^{\text {ii }}$	112.947 (7)	N1-C1-H1C	109.5
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br}^{1 i}$	97.93 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H1C}$	110.5
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{i}}$	53.571 (11)	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	108.5
$\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {ii }}$	82.07 (2)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
Ag1 ${ }^{\text {i }}$ - $\mathrm{Br} 2-\mathrm{Ag} 1$	72.86 (2)	N1-C2-H2B	109.5
C1-N1-C1 $1^{\text {iii }}$	111.8 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
C1-N1-C2	109.76 (13)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C1 ${ }^{\text {iiii }}$ - $\mathrm{N} 1-\mathrm{C} 2$	109.76 (13)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iii }}$	109.76 (13)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iii }}$	109.76 (13)		
Br 2 - $\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {ii }}$	-119.104 (11)	$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Br} 2-\mathrm{Ag} 1^{\mathrm{i}}$	0.0
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\text {ii }}$	119.104 (11)	$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br} 2-\mathrm{Ag} 1^{\mathrm{i}}$	125.005 (12)
$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{ii}}$	0.0	$\mathrm{Br}^{1 i}-\mathrm{Ag} 1-\mathrm{Br} 2-\mathrm{Ag} 1^{\text {i }}$	-125.005 (12)
Ag1 ${ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {ii }}$	180.0		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $-x+1,-y+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{C} \cdots \mathrm{Br}^{\mathrm{iv}}$	0.96	2.85	$3.802(4)$	172

Symmetry codes: (iv) $x+1 / 2,-y+3 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

